Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia.

نویسندگان

  • Noriyuki Nukui
  • Hiroshi Ezura
  • Kiwamu Minamisawa
چکیده

Ethylene inhibits the establishment of symbiosis between rhizobia and legumes. To examine how and when endogenous ethylene inhibits rhizobial infection and nodulation, we produced transgenic Lotus japonicus carrying the mutated melon ethylene receptor gene Cm-ERS1/H70A that confers ethylene insensitivity and fixes the transgene in the T(3) generation. The resultant transgenic plants showed reduced ethylene sensitivity because of 1-aminocyclopropane-1-carboxylate resistance and increased flowering duration, probably due to a dominant negative mechanism. When inoculated with Mesorhizobium loti, transgenic plants showed markedly higher numbers of infection threads and nodule primordia on their roots than did either wild-type or azygous plants during the early stage of cultivation period as well as during later stages, when the number of mature nodules had reached a steady state. In addition, transcripts of NIN, a gene governing infection thread formation, increased in the inoculated transgenic plants as compared with the wild-type plants. The infection responses of transgenic plants were similar to those of wild-type plants treated with ethylene inhibitors. These results imply that the endogenous ethylene in L. japonicus roots inhibits rhizobial infection at the primary nodulation, probably via NIN gene, and suggest that ethylene perception assists negative feedback regulation of secondary nodule initiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus.

BACKGROUND AND AIMS Transgenics are used to demonstrate a causal relationship between ethylene insensitivity of a seedling legume plant, the level of ethylene receptor gene expression, lateral root growth and Mesorhizobium loti-induced nodule initiation. METHODS Lotus japonicus plants expressing the dominant etr1-1 allele of the Arabidopsis thaliana gene encoding a well-characterized mutated ...

متن کامل

Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia

In Lotus japonicus, a LysM receptor kinase, EPR3, distinguishes compatible and incompatible rhizobial exopolysaccharides at the epidermis. However, the role of this recognition system in bacterial colonization of the root interior is unknown. Here we show that EPR3 advances the intracellular infection mechanism that mediates infection thread invasion of the root cortex and nodule primordia. At ...

متن کامل

Knockdown of LjIPT3 influences nodule development in Lotus japonicus.

Cytokinins play important roles in legume-rhizobia symbiosis. Here we report isolation of six genes encoding isopentenyl transferase (IPT) from Lotus japonicus, which catalyze the rate-limiting step of cytokinin biosynthesis. The LjIPT3 gene was found to be up-regulated in infected roots and mature nodules. Histochemical analysis demonstrated expression of Pro(LjIPT3):GUS (β-glucuronidase) in v...

متن کامل

The Mesorhizobium loti purB gene is involved in infection thread formation and nodule development in Lotus japonicus.

The purB and purH mutants of Mesorhizobium loti exhibited purine auxotrophy and nodulation deficiency on Lotus japonicus. In the presence of adenine, only the purH mutant induced nodule formation and the purB mutant produced few infection threads, suggesting that 5-aminoimidazole-4-carboxamide ribonucleotide biosynthesis catalyzed by PurB is required for the establishment of symbiosis.

متن کامل

The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus.

Nod Factor Receptor5 (NFR5) is an atypical receptor-like kinase, having no activation loop in the protein kinase domain. It forms a heterodimer with NFR1 and is required for the early plant responses to Rhizobium infection. A Rho-like small GTPase from Lotus japonicus was identified as an NFR5-interacting protein. The amino acid sequence of this Rho-like GTPase is closest to the Arabidopsis (Ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 45 4  شماره 

صفحات  -

تاریخ انتشار 2004